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Abstract. This paper addresses the problem of joint recognition and
localization of actions in videos. We develop a novel Transfer Laten-
t Support Vector Machine (TLSVM) by using Web images and weakly
annotated training videos. In order to alleviate the laborious and time-
consuming manual annotations of action locations, the model takes train-
ing videos which are only annotated with action labels as input. Due to
the non-available ground-truth of action locations in videos, the locations
are treated as latent variables in our method and are inferred during both
training and testing phrases. For the purpose of improving the localiza-
tion accuracy with some prior information of action locations, we collect
a number of Web images which are annotated with both action labels and
action locations to learn a discriminative model by enforcing the local
similarities between videos and Web images. A structural transforma-
tion based on randomized clustering forest is used to map Web images
to videos for handling the heterogeneous features of Web images and
videos. Experiments on two publicly available action datasets demon-
strate that the proposed model is effective for both action localization
and action recognition.

1 Introduction

Action recognition is an active research topic in computer vision and plays an im-
portant role in wide applications such as intelligent video surveillance, content-
based video retrieval and human computer interaction. Most of the existing
action recognition methods [1–4] focus on recognizing which action exists in a
video, regardless of where the action really takes place. In recent years, action
recognition and localization have attracted extensive research interests, and some
literatures [5–8] engage in jointly predicting which action is performed (recog-
nition) and where the action occurs (localization) in videos. However, most of
the action recognition and localization methods require both the annotations of
action classes and action locations in each frame for training.

In this work, we aim to build an action recognition and localization system
which takes training videos only annotated with action labels as input for allevi-
ating the arduous and time-consuming manual annotations of action locations.
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Some recent literatures [9, 10] also consider to localize and recognize actions
using weakly annotated training videos. These methods generate candidate spa-
tiotemporal regions without supervision and take one or more spatiotemporal
regions discriminative for action recognition as the results of action localization.
These methods assume that the most discriminative parts of videos are actually
the spatiotemporal regions of the actions. However, for many actions such as
diving and bowling, instances usually share similar scenarios. Consequently, re-
gions of background are more discriminative than regions of motions for action
recognition, which would lead to incorrect localizations.

To address this problem, we propose a novel Transfer Latent Support Vector
Machine (TLSVM) for jointly recognizing and localizing actions in videos by us-
ing training videos only annotated with action labels and Web images annotated
with both action labels and action locations. The model takes the spatiotempo-
ral regions of actions as latent variables and selects the best one from a set of
region candidates in both training and test videos. During the training stage,
the local similarities between spatiotemporal regions of interest from training
videos and the annotated regions of interest from Web images are enforced to
boost both action recognition and localization. At test time, the proposed model
is able to automatically predict both the action label and location in an input
video. In this paper, bag-of-words representations based on randomized cluster-
ing forest are adopted to characterize videos and Web images. Since videos and
Web images are represented by heterogeneous features generated from different
code books, we introduce a structural transformation based on randomized clus-
tering forest to transform the image feature space to the video feature space. An
overview of our approach is illustrated in Fig. 1.

The remainder of this paper is organized as follows. Section 2 reviews the
related work. In Section 3, we describe the representation of videos and Web
images, including the bag-of-words framework based on randomized clustering
forest and the structural transformation from images to videos. The detailed
implementation of the proposed TLSVM model is introduced in Section 4. In
Section 5, we evaluate the proposed method on the UCF sports dataset and the
Olympic sports dataset. Finally, Sections 6 gives the conclusions drawn from the
experimental results .

2 Related Work

Some recent literatures [5–8] focus on simultaneously predicting the action label
and localizing the action within a video. Yao et al. [5] presented an approach to
classify and localize actions using a Hough transform voting framework. They
annotated each frame of training examples with a bounding box, in order to ob-
tain normalized action tracks to build a hough forest. An implicit representation
of the spatiotemporal shape of an activity is proposed in [6] for localizing and
recognizing human actions in unsegmented image sequences, in which the upper
and lower bounds of the subjects are manually annotated at each frame. Lan et
al. [7] proposed a discriminative model coupling action recognition with person
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Fig. 1. Overview of the proposed method.

localization. Although this method utilizes a latent region of interest to indicate
the action location, it still requires the supervision of latent region in each frame
of training videos. Raptis et al. [8] focused on discovering discriminative action
parts from clusters of local trajectories that are densely sampled from the videos
for action recognition and localization. In their work, strongly supervised bound-
ing boxes of all training frames are extracted to restrict the selection of action
parts. All of the aforementioned approaches require the manual annotation of
action location for each frame as well as the action label for the whole video.

Shapovalova et al. [9] proposed a SCLSVM model for weakly supervised ac-
tion recognition and localization. This model aims to advance the recognition
performance by enforcing the consistency of local regions among training data,
and uses the regions that are most discriminative for recognition as localization
results. Ma et al. [10] presented to generate Hierarchical Space-Time Segments
in an unsupervised manner, and these segments are utilized as the action repre-
sentation for classification. In their work, localization of the action is achieved
by outputting space-time segments that have positive contributions to the clas-
sification. However, in many cases, a region from the background may be chosen
as the action localization result due to the similar scenarios shared among train-
ing videos with the same action label. Our approach conquers this problem by
introducing Web images which are annotated with both action labels and ac-
tion locations. Local similarities between spatiotemporal regions of interest from
training videos and annotated regions of interest from Web images are enforced
to boost both action recognition and localization.

There has been recent interests in transferring visual knowledge from im-
ages to videos. Duan et al. [11] developed a multiple source domain adaptation
method for event recognition in consumer videos by leveraging a large number of
Web images from different sources. Chen et al. [12] proposed an event recognition
model for consumer videos, using a large number of loosely labeled Web videos
and Web images. Both of these methods focus on event recognition without con-
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sidering the localization task, while the proposed approach can simultaneously
recognize and localize the action in a video. Ikizler-Cinbis and Sclaroff [13] em-
ployed action pose classifiers trained with a large image dataset to detect actions
in each frame of an input video. A key difference between our approach and [13]
is that [13] focuses on transferring knowledge from images to images, while our
model is able to transfer knowledge from Web images to videos for recognizing
and localizing actions in videos.

3 Representation of Videos and Images

In this section, we first describe how to represent videos and Web images in a
bag-of-words framework based on randomized clustering forest [14], and then we
present a structural transformation to map images to videos.

3.1 Bag-of-words Representation Based on Randomized Clustering
Forest

Bag-of-words model [2] is a popular and powerful method for classification and
recognition, which quantizes the low-level local descriptors as a histogram of
visual words to get a discriminative mid-level representation. In our work, we use
the randomized clustering forest [14] to quantize low-level descriptors effectively.

Web images are characterized by a set of densely sampled low-level HOG
descriptors [15] {zHOGl }l=1:NI

, and videos are described by dense trajectories [16]

{ztrajk }k=1:NV
. For trajectory k, a descriptor ztrajk is extracted within a space-

time volume around the trajectory, and a HOG descriptor zHOGk is extracted

to characterize the spatial patch. The trajectory descriptors {ztrajk }k=1:NV
are

utilized to construct the randomized clustering forest for videos, while two sets of
HOG descriptors {zHOGk }k=1:NV

and {zHOGl }l=1:NI
are integrated to build the

randomized clustering forest for images. Moreover, the correspondence between
ztrajk and zHOGk are exploited to learn a transformation from images to videos,
which will be described in detail in Section 3.2.

Randomized clustering forest is an ensemble of decision trees, and the tree
hierarchies provide a means of clustering low-level local descriptors. Nodes of
each tree constitute the hierarchical clusters, namely, the visual words in bag-of-
words model. Histograms of visual words in videos are generated from clustering
forests built upon trajectory descriptors, while histograms of visual words in
images are created from forests built upon HOG descriptors.

Construction of trees. Each tree in a clustering forest is independently
grown from a random subset D′ of the labeled training low-level descriptors D
in a top-down manner. We assume that low-level descriptors share the same label
with the video or image they are sampled from. All the training data in D′ are
dropped down from the root of a tree. In order to split a node n, we randomly
generate a set of NH hypotheses {(cnk , tnk )k=1:NH

}, where cnk denotes one feature
candidate and tnk is the corresponding threshold for splitting. Each hypothesis
divides the training data arriving at the node n into two subsets, and the one
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Fig. 2. Generating the mid-level representation for a video.

maximizing the expected information gain is chosen for node split. Growth of a
tree is controlled by a maximum tree depth and a minimum amount of samples,
so a node stops splitting in the following three cases: (1)The limited tree depth
is reached; (2)There are not enough data for splitting; (3)All the data belong to
the same class. If one of the above three conditions is satisfied, the node will be
treated as a leaf.

Data coding. We take all the nodes (except the root) of each tree, including
split nodes and leaf nodes as hierarchical visual words in our framework. Ran-
domized forests for videos and images are built separately by their corresponding
training low-level descriptors, we quantize the visual words for videos and images
in the same way. Taking a video for example, all the extracted local trajectory
descriptors are dropped down from the root of each tree, and the occurrences of
nodes across all trees are concatenated to create a normalized histogram H, as
shown in Fig.2. Suppose H(n) to be the occurrence of split node n, then H(n)
can be calculated as

H(n) = H(nL) + H(nR), (1)

where nL and nR denote the left and right children nodes of node n, respectively.
The hierarchical histogram encodes the structure of each tree, and the relation-
ship among father node and children nodes (defined in Eq. 1) is employed to
learn a linear transformation in the next section.

3.2 Structural Transformation

In order to cope with the heterogeneous features of images and videos, a class
specific structural transformation is introduced to map the image feature space
to the video feature space.

Assume that RFV = {TVr }r=1:NT
and RF I = {T Ir }r=1:NT

are randomized
clustering forests for videos and images, respectively, where Tr denotes the r th
tree in a forest and NT is the number of trees. Training trajectory descriptors of
videos {ztrajk }k=1:NV

are passed through TVr from the root, and the correspond-
ing HOG descriptors {zHOGk }k=1:NV

are dropped down to T Ir simultaneously.
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We first learn a set of class specific mapping matrices {Lyr}y∈Y ∈ RNl
V
r ×Nl

I
r

among the leaf nodes of T Ir and TVr by using the correspondence between low-
level descriptors, where NlVr is the number of leaf nodes in tree TVr , and NlIr
is the number of leaf nodes in tree T Ir . Each element Lyr(p, q) in matrix Lyr is
obtained by calculating the amount of samples k of action y, that ztrajk reaches
leaf node p of tree TVr and zHOGk goes to leaf node q of tree T Ir . Normalization
is performed on each column of Lyr afterwards.

Suppose HI
r to be the histogram of an image with action label y, generated

by tree T Ir , and HlIr ∈ RNl
I
r×1 to be a sub-histogram of HI

r corresponding to

leaf nodes, we can get a transformed sub-histogram HlVr ∈ RNl
V
r ×1 by defining

each element in HlVr as

HlVr (p) =

Ir∑
q=1:Nl

Lyr(p, q) ·HlIr(q). (2)

With the transformed sub-histogram HlVr of leaf nodes, we can create the trans-
formed histogram HV

r of all nodes according to Eq. 1.
Since both of the transformations defined by Eq. 1 and Eq. 2 are linear, the w-

hole transformation from HI
r to HV

r is also a linear transformation. Transformed
histograms of all trees {HV

r }r=1:NT
are concatenated to form the transformed

mid-level representation of the Web image. In the following, we use a matrix A
to represent the linear transformation from the feature space of images to that
of videos, for convenience.

4 Transfer Latent SVM Model

The Transfer Latent SVM (TLSVM) Model is able to predict both which action
happens and where this action locates in an action video. A few Web images
annotated with both the action labels and action locations are employed to learn
a discriminative model. Since the annotations of action locations are not available
for training videos, the model takes the action location as a latent variable
and could automatically select a region of interest from a set of spatiotemporal
region candidates. In the rest of this section, we first describe the generation
of candidate spatiotemporal regions of interest, and then we present the model
formulation, the learning procedure and the inference.

4.1 Candidate Spatiotemporal Regions of Interest

Our goal is to generate a reduced set of candidate spatiotemporal regions of
interest for a given video. One intuitive strategy is to extract global 3-dimensional
bounding boxes covering the whole action. However, this constrained structure
is only applicable for actions with stable locations in a video (i.e, boxing and
handshake), and does not work well on drastic actions such as running and
walking. In this paper, we independently detect bounding boxes from each frame
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by using both the static appearance information and the motion information,
and then a two-stage cluster algorithm is introduced to group the bounding
boxes into different spatiotemporal regions of interest.

Given an input video, an “objectness” detector [17] is utilized to extract
bounding boxes that are likely to contain an object of interest from each frame of
the video. Appearance information characterizes the static pattern of an image,
while motion information captures the focus of action and allows to discard
some irrelevant parts from the background. In order to take advantage of both
the static appearance information and the motion information, we compute the
boundary map [18] for each frame by merging six appearance channels (i.e,
color and soft-segmentation [18]) and two optical flow [19] channels, then the
“objectness” detector operates on the boundary maps and returns the potential
bounding boxes.

With the detected bounding boxes from each frame, we utilized a two-stage
cluster algorithm based on Affinity Propagation [20] to group the bounding box-
es into different spatiotemporal regions of interest. Affinity Propagation is an
exemplar based cluster algorithm, taking a similarity matrix between samples
as input.

In the first stage, Affinity Propagation cluster algorithm is employed to group
the bounding boxes into hundreds of clusters based on their appearance simi-
larities and spatiotemporal distances. Intuitively, bounding boxes that are both
similar in appearance and adjacent in space and time fall in the same cluster.
Given two bounding boxes Bi = (hi,ai, ci, ti) and Bj = (hj ,aj , cj , tj), where
hi is the color histogram, ai denotes the area, ci denotes the spatial coordinates
for the center point, and ti represents the temporal coordinate. The similarity
between Bi and Bj is defined as

SB(Bi, Bj)=−Dh(hi,hj)−Da(ai,aj)−Ds(ci, cj)−Dt(ti, tj), (3)

where Dh, Da, Ds and Dt denote the χ2 distance between two color histograms,
the difference between the area, the spatial Euclidean distance between two cen-
ter points and the temporal distance between two bounding boxes, respectively.
Due to the temporal distance Dt, bounding boxes extracted from temporally
distant frames will fall into different clusters, and each cluster is composed of
similar bounding boxes from adjacent frames.

In the second stage, Affinity Propagation cluster algorithm is performed on
the first-stage clusters, according to the similarities between bounding boxes in
different first-stage clusters. This results in tens of second-stage clusters, and
bounding boxes appear in the same second-stage cluster form a spatiotemporal
region of interest. The similarity between two first-stage clusters C1

k and C1
l is

defined as

SC(C1
k , C

1
l ) = max

i,j:Bi∈C1
k,Bj∈C1

l

−Dh(hi,hj)−Da(ai,aj)−Ds(ci, cj). (4)

Different from Eq.3, the similarity measure in Eq.4 does not take the temporal
distance Dt of bounding boxes into consideration. Accordingly, similar bounding
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boxes from adjacent frames are grouped into clusters in the first stage, and then
distant first-stage clusters with similar appearances are allowed to be clustered
together in the second stage.

4.2 Model Formulation

Let DV = {(xi, yi)i=1:N} be the training videos, where yi ∈ Y is the action
label of video xi, and the unobserved action locations {hi}i=1:N of videos are
treated as latent variables in our model. The latent variable hi specifies a local
spatiotemporal region in video xi. Our method aims to learn a discriminative
compatibility function F (x, y) which measures how compatible the action label
y is suited to an input video x:

F (x, y) = max
h

fω(x, y, h),

fω(x, y, h) = ωTΦ(x, y, h),

where ω is the learned parameter of the model, and Φ(x, y, h) is a joint feature
vector which describes the relationship between the action video x, the action
label y, and the latent action location h.

The model parameter includes two parts ω = {α;β}. The relationship be-
tween an action video x, an action label y and the latent region h is formulated
as

ωTΦ(x, y, h) = αTϕ1(x, y) + βTϕ2(x, h, y), (5)

αTϕ1(x, y) =

Ny∑
t=1

αTt · φ(x) · I(y = t),

βTϕ2(x, h, y) =

Ny∑
t=1

βTt · ψ(x, h) · I(y = t),

where I(y = t) is an indicator function, with I(y = t) = 1 if y = t and 0
otherwise. The potential function αTϕ1(x, y) captures the global relationship
between an action video x and the action label y, where φ(x) denotes a mid-
level representation obtained by the random clustering forest using low-level
trajectory descriptors extracted from the whole video. The potential function
βTϕ2(x, h, y) measures the compatibility between a local region h and the action
label y, where ψ(x, h) is also a mid-level feature vector, but only using low-level
trajectory descriptors extracted from a local region of x specified by the latent
variable h.

4.3 Learning

Given a set of weakly labeled training videos DV = {(xi, yi)i=1:N} and a few
Web images DI = {(xIj , yIj , hIj )j=1:M}, where yIj ∈ Y is the action label of image

xIj and hIj indicates the spatial location of the person, our goal is to learn the
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model parameter ω. Since the unobserved action locations of training videos
{hi}i=1:N are treated as latent variables, the model is formulated in a latent
structural SVM framework for learning:

min
ω,ξi,ξIj ,ξ

s
i

1
2‖ω‖

2 + C1

N∑
i=1

ξi + C2

M∑
j=1

ξIj + C3

N∑
i=1

ξSi , (6)

s.t. fω(xi, yi, hi)− fω(xi, y
′, h′) ≥

∆(yi, y
′)− ξi;∀y′,∀h′,∀i; (7)

gω(xIj , yj , hj)− gω(xIj , y
′, hj) ≥

∆(yj , y
′)− ξIj ;∀y′,∀j; (8)

min
j:yi=yj

1
Zxi
·Θ((xi, hi), (x

I
j , hj)) ≤ ξSi (9)

where ξi and ξSi are slack variables for training video xi, and ξIj is the slack

variable for Web image xIj . The normalization factor Zxi
for video xi is defined

by

Zxi
= max

h
min
j:yi=yj

Θ((xi, h), (xIj , hj)). (10)

Eq. 7 represents the usual latent SVM max margin constraints which optimize
ω by classifying training videos correctly. The loss function ∆(y, y′) measures the
cost of predicting the truth label y as action label y′. We define ∆(y, y′) as a
simple Hamming loss: ∆(y, y′) is 1 if y 6= y′ and 0 otherwise.

Eq. 8 denotes the max margin constraints for the transferred Web images.
The constraints defined in Eq. 7 and Eq. 8 compel the model to classify both
the Web images and the training videos. Different from the training videos, the
Web images are annotated with the regions of actions, therefore Eq. 8 does not
include any latent variables. gω(xI , y, h) is the score function for Web images,
defined by

gω(xI , y, h) =

Ny∑
t=1

αTt ·A · φ(xI) +

Ny∑
t=1

βTt ·A · ψ(xI , h).

where A is a learned mapping matrix transforming the image feature space to the
video feature space, as Web images and videos are represented by heterogeneous
features with different dimensions.

Eq. 9 enforces the local similarities between training videos and Web images,
which means that the latent regions of training videos should resemble the re-
gions of actions annotated in Web images. According to this constraint, TLSVM
model is inclined to choose latent regions with more similarity or less distance
to the annotated local regions of images, which benefits both classification and
localization. Here we define the loss function Θ((xi, hi), (x

I
j , h

I
j )) as a pair-wise

distance to estimate the similarity between a local region of image and a latent
region of video, which can be directly calculated using mapping matrix A as

Θ((xi, hi), (x
I
j , h

I
j )) = d(ψ(xi, hi),A · ψ(xIj , h

I
j )),
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A variety of distance functions can be employed to measure the similarity be-
tween a video and an image, and we adopt the χ2 distance which is suitable for
histogram similarity estimation.

The optimization problem in Eq. 6 is non-convex since the latent variables
{hi}i=1:N are not observed during learning. Therefore we employ the non-convex
bundle optimization algorithm [21]. This algorithm iteratively builds a gradually
accurate piecewise quadratic approximation, and converges to an optimal solu-
tion of parameter ω. At each iteration, calculation of the subgradient is required
to add a new linear cutting plane to the piecewise quadratic approximation.

The objective function in Eq. 6 can be rewritten in an unconstrained form:

O(ω) = min
ω

1

2
‖ω‖2 +

N∑
i=1

(Li −Ri) +

M∑
j=1

P Ij , (11)

where Li, Ri and P Ij are defined by

Li = C1 max
y′,h′

[fω(xi, y
′, h′) +∆(y′, yi)],

Ri = max
hi

[C1fω(xi, yi, hi)−
C3

Zxi

min
j
Θ((xi, hi), (x

I
j , hj))],

P Ij = C2{max
y′

[gω(xIj , y
′, hIj ) +∆(y′, yj)]− gω(xIj , yj , h

I
j )}.

Assume that (y∗i , h
∗
i ), hi and y∗j are solutions to Li, Ri, and P Ij , respectively,

the subgradient of O(ω) in Eq. 11 can be calculated by

∂ω(O(ω)) =C1

N∑
i=1

(Φ(xi, y
∗
i , h
∗
i )− Φ(xi, yi, hi))

+ C2

M∑
j=1

(Φ(xIj , y
∗
j , h

I
j )− Φ(xIj , yj , h

I
j )).

We enumerate y′, h′ and hi to find the optimal (y∗i , h
∗
i ), hi and y∗j .

4.4 Inference

With the learned parameter ω, the inference problem is to simultaneously find
the best action label y∗ and the best latent region h∗ given an input video x.
The inference is equal to the following optimization problem:

(y∗, h∗) = arg max
y,h

ωTΦ(x, y, h). (12)

We can solve Eq. 12 by enumerating all the possible action labels y and latent
regions h for a test video x, as the set of possible values for y and h is limited.
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5 Experiments

5.1 Dataset and Settings

We evaluate our method on the UCF sports dataset [22] and the Olympic sports
dataset [23]. The UCF sports datase contains 150 sports videos of 10 different
human actions. Videos in this dataset are extracted from sports broadcasts, and
bounding boxes of the person performing the action are provided for each frame.
The test strategy proposed in [7] is adopted, in which one third of the videos
are selected for testing, leaving the rest for training. The Olympic sports dataset
consists of 783 sports videos of 16 action classes. Complex sports actions, drastic
camera motions, poor light and large variations of human appearance augment
the difficulty of both action recognition and localization. The whole dataset
is split into 649 videos for training and 134 videos for testing. We annotate the
Olympic sports dataset with bounding boxes in order to quantify our localization
performance. We use Image Search Engine to download images from the Web
taking the action class labels as query keywords, and annotate a bounding box
around the person of interest for each Web image. Examples of the Web images
are shown in Fig. 3.

In our implementation, HOG and MBH descriptors of dense trajectory [16]
are extracted from videos, and HOG descriptors are densely sampled from the
Web images. We randomly select 100,000 training descriptors to build the clus-
tering forests for videos and images. The clustering forest of Web images consists
of five trees, and the depth of each tree is limited to 12. The clustering forest of
videos consists of five trees, and the depth of each tree is limited to sixteen and
eleven for the UCF sports dataset and the Olympic sports dataset, respectively.

We compare the proposed approach with three baseline methods:
Global linear SVM model without images. It only considers the first

potential function αTϕ1(x, y) in Eq. 5, which captures the global relationship
between a video x and the action label y. A linear SVM classifier is trained on
the global representations of training videos. Note that this method can only
assign an action label to a test video, without predicting the location of person.

Latent SVM model without images. It is similar to our method, except
that no Web images are employed. Regions of interest are also treated as latent
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Table 1. Action recognition accuracy comparison with three baselines.

Method UCF Olympic

Linear SVM 0.711 0.643
Latent SVM 0.794 0.695
TLSVM (Video frames) 0.844 0.715
TLSVM (Web images) 0.869 0.727

variables, but the local similarities between training videos and Web images
are not enforced in this model. Particularly, only the parameter ω under the
constraint in Eq. 7 is optimized, and the constraints in Eq. 8 and Eq. 9 are
neglected.

TLSVM model using frames from the training videos. Instead of
using Web images, this baseline method employs frames randomly selected from
the training videos to learn the model. With this baseline method, we aim to
assess the benefit of introducing Web images for training.

5.2 Experimental Results

Action Recognition. The proposed approach is compared with the three base-
line methods, and the results are summarized in Table 1. It is observable that
the proposed approach significantly improves the recognition accuracy compared
with the first two baseline methods, which demonstrates the effectiveness of
leveraging annotated images for training the model. Meanwhile, our method
performs slightly better than the third baseline method, in which the Web im-
ages are replaced by images selected from the training videos. A major cause of
the performance improvement is that our method avoids the problem of overfit-
ting. Furthermore, the Latent SVM method achieves better performance than
the Linear SVM method, which leads a conclusion that incorporating local spa-
tiotemporal information benefits the recognition of action videos.

Table 2 compares the proposed approach with state-of-the-art methods [7, 9,
8, 10] on the UCF sports dataset. As is shown in Table 2, our approach achieves
the best result among all the listed methods. We also compare our method with
other methods on the Olympic sports dataset. We evaluate the mean average
precision for all categories and show the results of different methods in Table 3.
It is observable that the proposed method achieves better performance than the
methods listed in Table 3.

Action Localization. We adopt the evaluation criterion in [7] and compute
the ROC curves of each action class. Given a video, the IOU (intersection-over-
union) score is computed for each frame, and the average IOU score over all test
frames is compared to a predefined threshold ν to decide whether this video is
successfully localized. A test video is considered to be correctly predicted if it
is correctly classified and the average IOU score is larger than ν. The action
localization results on the UCF sports dataset and the Olympic sports dataset
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Table 2. Mean action recognition accuracy of each class for different methods on the
UCF sports dataset.

Method Accuracy

Lan et al. [7] 0.731
Shapovalova et al. [9] 0.753
Raptis et al. [8] 0.794
Ma et al. [10] 0.817
Our method 0.869

Table 3. Mean Average Precision (MAP) of each class for different methods on the
Olympic Sports dataset.

Method MAP

Niebles et al. [23] 0.625
Tang et al. [24] 0.668
Liu et al. [25] 0.743
Li et al. [26] 0.765
Our method 0.771

are shown in Fig. 4 and Fig. 5, respectively. Fig. 4(a) and Fig. 5(a) depict the
average ROC curves for all action classes with ν = 0.2. The Area Under ROC
curve (AUC) is evaluated with ν varying from 0.1 to 0.5, and the curves are
shown in Fig. 4(b) and Fig. 5(b).

From Fig. 4 and Fig. 5, we can see that our method outperforms the last two
baseline methods, which demonstrates the effectiveness of introducing the Web
images for learning. Our method is also compared with the method of [7] on the
UCF sports dataset. As is shown in Fig. 4, although [7] is trained on videos anno-
tated with bounding boxes for each frame, our method could outperform [7] by
using a few annotated images. Moreover, in many cases, the proposed approach
using Web images performs better than the third baseline method which employs
images from training data, especially for ν = 0.2. These results demonstrate the
positive effect of introducing Web images into training for action localization.

6 Conclusions

We have presented a discriminative Transfer Latent Support Vector Machine
(TLSVM) for jointly recognizing and localizing actions in videos. The model
is trained on videos only annotated with action labels, and a few Web images
annotated with both action labels and action locations are introduced into the
learning framework. The spatiotemporal region capturing the action being per-
formed is treated as a latent variable in the proposed model. Since images and
videos are represented by different types of features, we introduce a structural
transformation that maps images to videos. Experimental results on the UCF
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Fig. 4. Comparison of action localization performance on the UCF sports dataset.
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Fig. 5. Comparison of action localization performance on the Olympic sports dataset.

sports dataset and the Olympic sports dataset demonstrate that our model can
effectively recognize and localize actions in videos.
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